道格拉斯-普克抽稀算法,是用来对大量冗余的图形数据点进行压缩以提取必要的数据点。
文章包括三部分
- 算法原理
- 代码实现(csharp)
- 实际应用举例对比(图)
道格拉斯普克算法原理
该算法实现抽稀的过程是:
1)对曲线的首末点虚连一条直线,求曲线上所有点与直线的距离,并找出最大距离值dmax,用dmax与事先给定的阈值D相比:
2)若dmax<D,则将这条曲线上的中间点全部舍去;则该直线段作为曲线的近似,该段曲线处理完毕。
若dmax≥D,保留dmax对应的坐标点,并以该点为界,把曲线分为两部分,对这两部分重复使用该方法,即重复1),2)步,直到所有dmax均<D,即完成对曲线的抽稀。
显然,本算法的抽稀精度也与阈值相关,阈值越大,简化程度越大,点减少的越多,反之,化简程度越低,点保留的越多,形状也越趋于原曲线。